This article was downloaded by: [Renmin University of China] On: 13 October 2013, At: 10:29 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: <http://www.tandfonline.com/loi/gcoo20>

Synthesis and spectral behavior of nanometric Ti(IV) complexes with nitrogen, sulfur, and oxygen donors

U.N. Tripathi^a, Neetu Srivastava^a, Mohd. Safi Ahmed ^b, A. Siddiqui^a & Shashank K. Dwivedi^a

^a Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273001, UP, India

b School of Studies in Chemistry, Vikram University, Ujjain, MP, India

Published online: 14 Nov 2011.

To cite this article: U.N. Tripathi , Neetu Srivastava , Mohd. Safi Ahmed , A. Siddiqui & Shashank K. Dwivedi (2011) Synthesis and spectral behavior of nanometric Ti(IV) complexes with nitrogen, sulfur, and oxygen donors, Journal of Coordination Chemistry, 64:22, 3938-3949, DOI: [10.1080/00958972.2011.625020](http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00958972.2011.625020)

To link to this article: <http://dx.doi.org/10.1080/00958972.2011.625020>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at [http://www.tandfonline.com/page/terms](http://www.tandfonline.com/page/terms-and-conditions)[and-conditions](http://www.tandfonline.com/page/terms-and-conditions)

Synthesis and spectral behavior of nanometric Ti(IV) complexes with nitrogen, sulfur, and oxygen donors

U.N. TRIPATHI†*, NEETU SRIVASTAVA†, MOHD. SAFI AHMED[†], A. SIDDIQUI[†] and SHASHANK K. DWIVEDI[†]

yDepartment of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273001, UP, India zSchool of Studies in Chemistry, Vikram University, Ujjain, MP, India

(Received 11 July 2011; in final form 30 August 2011)

To study the spectral behavior of Ti(IV) complexes with sulfur donors, several new nano-sized mixed ligand complexes of Ti(IV) have been synthesized by the reaction of titanium(IV) salts with 3(2'-hydroxyl phenyl)-5-(4-substituted phenyl)pyrazolines and ammonium salts of dithiophosphates. Spectroscopic and X-ray diffraction studies reveal amorphous and monomeric complexes. The Ti(IV) complexes show octahedral geometry in which dithiophosphate and pyrazoline are bidentate. Transmission electron microscopic image shows that the particle size ranges from 50 to 90 nm.

Keywords: Titanium(IV); Nano particle; Dithiophosphate; Pyrazolines

1. Introduction

Interest in the chemistry of metal complexes with sulfur containing ligands arises due to their biological activities [1-6]. Ligation of sulfur of O,O'-dialkyl and alkylene dithiophosphate derivatives to Cu(II), Ag(I), and Fe(II) has been reported by several authors [7–10]. Derivatives of arsenic, antimony, and bismuth with dithiophosphates are employed as lubricant additives [11, 12] and antitumor agents [13].

Synthesis of simple thiols of titanium is not possible due to the hard acid character of titanium [14]. To reduce the acidic strength of Ti(IV) several authors have attached electron-rich ligands such as cyclopentadienyl and dialkyl nitrogen, which then form stable complexes with sulfur donors [15–18]. To study the synthetic and spectral behavior of Ti(IV) complexes with nitrogen, sulfur and oxygen donors, a series of Ti(IV) complexes containing pyrazoline and dithiophosphate have been synthesized. The resulting complex may act as a precursor for formation of titanium disulfide thin film [19–21].

^{*}Corresponding author. Email: un_tripathi@yahoo.com

2. Materials and methods

All reactions were carried out under absolutely dry conditions. Solvents were distilled, dried and purified by standard techniques [22]. Pyrazolines and the ammonium salts of dialkyl/alkylene dithiophosphates were prepared by literature methods [23, 24]. Chloride was estimated by Volhard's method [25] and titanium was determined gravimetrically by Cupferron's method [25]. Elemental analyses (C, H, N) were obtained by using a Coleman CHN analyzer (table 1). IR spectra were recorded on a Varian 3100 FT-IR spectrophotometer from 4000 to 200 cm^{-1} . ¹HNMR spectra and proton decoupled ¹³C NMR spectra were recorded at room temperature on a JOEL AL 300 FT NMR spectrophotometer operated at 300.40 MHz. X-ray diffraction studies were carried out on a Bruker Nonius Kappa CCD diffractometer at room temperature. TEM studies have been carried out on a JEOL 2010 high-resolution transmission electron microscope, operated at 200 keV. FAB mass spectra were recorded on a JOEL SX102 mass spectrometer using Argon or Xenon (6 kV, 10 mA) as the FAB gas.

3. Experimental

3.1. Synthesis of $\overline{[\text{TiCl}_2(\text{C}_{15}H_{12}N_2OH)(OC_3H_7)_2P(S)_2]}$ (1)

Titanium tetrachloride suspension in benzene (0.97 g, 5.10 mmol) was added dropwise to a solution of pyrazoline (1.21 g, 5.10 mmol) in benzene at room temperature with constant stirring for $2-3$ h. The ammonium salt of dithiophosphate solution (1.18 g, 5.08 mmol) in methanol was added dropwise to the reaction mixture and stirring continued for 4–5 h. The NH4Cl was filtered off through an alkoxy funnel and the volatiles were removed from the filtrate under reduced pressure. Compounds 2–24 were synthesized by the same procedure.

4. Results and discussion

All the compounds are red to reddish brown non-hygroscopic solids, stable at room temperature, and soluble in common organic solvents (methanol, chloroform, THF, DMSO, and DMF). Molecular weight measurement indicates monomers. Elemental analysis (C, H, S, Cl, Ti, and N) data are in accord with the stoichiometry proposed.

4.1. IR spectral data

IR spectra show bands of medium intensity at $3397-3348 \text{ cm}^{-1}$ due to $\nu[\text{N-H}]$ [26] and bands at 1650–1603 cm⁻¹ due to ν [C=N] [27]. In all compounds, ν [C=N] is shifted to lower wavenumber in comparison to spectra of free pyrazolines (at \sim 1654 cm⁻¹), suggesting imino nitrogen coordination. The ν (O–H) originally at ~3080 cm⁻¹ is completely missing from spectra of complexes. Bands at 1090–1010 cm⁻¹ and 890– 850 cm^{-1} have been assigned to ν [(P)–O–C] [28, 29] and ν [P–O–(C)] [30, 31], respectively. The $v[P=S]$ may have bands at 710–660 cm⁻¹, indicating bidentate

Table 1. Physical and analytical data for $TiCl₂(C₁₅)$ H_{12} N $N_2 O X$] $\left[S_2 P(OR)_{2} \right]$.

 $\overline{}$

3940 U.N. Tripathi et al.

dithiophosphate [28, 29]. The bands at $610-554 \text{ cm}^{-1}$ may be ascribed to ν [P–S] [32]. New bands (in comparison to free ligand) at $334-320 \text{ cm}^{-1}$ have been assigned to ν [Ti-S] [33]; bands at 360–348 cm⁻¹, 449–429 cm⁻¹, and 383–371 cm⁻¹ are assigned to v[Ti-Cl], ν [Ti–O], and ν [Ti–N] [33]. The IR spectral data are given in table 2.

4.2. 1H NMR spectra

¹H NMR spectra have been recorded in CDCl₃. The aromatic protons of pyrazolines were observed as a complex pattern at δ 7.85–6.89 [34]. The peak due to hydroxyl protons (originally present at $\delta \sim 11.00$ in free pyrazolines) is absent from spectra of the complex, suggesting bonding through hydroxyl oxygen. The appearance of a peak at δ 5.35–4.95 as a broad singlet is assigned to –NH (originally at δ 5.4–5.0), indicating non-involvement of –NH [34]. Peaks at δ 3.54–3.05 and δ 2.56–2.01 are assigned to –CH and $-CH_2$. Bands at δ 5.32–4.18 are assigned to $-OCH_2$ and $-OCH$. Skeletal protons of phenyl are at δ 7.25–7.0.

4.3. $31P NMR$ data

In ³¹P NMR spectra of these compounds only one signal is observed. Downfield (δ 15–19) shifting of the signal due to dithiophosphate confirms bidentate dithiophosphate [35, 36].

4.4. ${}^{13}C$ NMR data

The proton decoupled 13 C NMR spectra show all signals of dithiophosphates and pyrazolines. Signals at 137.90–121.32 ppm as a complex pattern are assigned to aromatic carbons. The signal at $167.81 - 162.95$ ppm due to imino carbon of C=N group shifts downfield in comparison to free pyrazolines (143.50–142.80 ppm), suggesting imino nitrogen coordination. Resonances of –OC and –OCH of dithiophosphates are observed at 91.45–93.00 ppm and 75.93–77.52 ppm. Peaks of $-CH$ and $CH₂$ are at 45.73–43.09 and 27.85–24.23, respectively. The NMR $(^1H, ^{13}C,$ and $^{31}P)$ data are summarized in table 3.

4.5. XRD and TEM studies

These complexes have been examined for crystalline/amorphous nature through XRD; all complexes are amorphous solids. Broadening of diffraction peaks was used to estimate the average domain size in terms of the ''Debye–Scherrer'' expression.

Particle size = $D = 0.9\lambda/\beta \cos \theta_B$.

The average diameter was in the range 20–50 nm. TEM studies showed that the particle size ranged from 50 to 90 nm. The mean diameters of the different particles synthesized are summarized in table 4. XRD micrograph and TEM images of 3 are shown in figures 1 and 2, respectively.

IR spectral data (cm⁻¹) for TiCl₂(C₁₅H₁₂N₂OX)(RO)₂PS(S). $1)$ for TiCl₂(C₁₅H₁₂N₂OX)(RO)₂PS(S). Table 2. IR spectral data (cm- \sim Table

I

Compound No.	Chemical shift (δ ppm)		
	H NMR	13 C NMR	$31P$ NMR
1	7.45–6.85(m, Ar–H) $0.96(t, 12H, -CH3)$ 5.18 (m, 8H, $-OCH2$) 1.65(m, 8H, $-CH_2$) $5.25 - 5.04(s, 2H, NH)$ $3.45-3.12(t, 2H, -CH)$		106.10
2	$2.18-2.01(d, 4H, -CH2)$ 7.67–6.89(m, Ar–H) 7.23(s, 2H, $-C_6H_5$) $4.67(s, 2H, -NH)$ $3.21(t, 4H, -CH)$ $2.56(d, 8H, -CH2)$		92.40
3	$7.56 - 6.82(m, Ar-H)$ 2.92-2.65(m, 22H, -CH ₃ , CH ₂) $5.32(m, 2H, -OCH)$ $4.73(s, 4H, -NH)$ $3.54(t, 2H, -CH)$ 2.21(d, 8H, CH ₂)	$91.67(-OC, dtp)$ 24.71(-CH ₃ , dtp) 77.05(-OCH, dtp) $26.52(-CH2, dtp)$ $136.94(Ar-C)$ $167.55(C=N)$ $43.09(-CH)$	93.60
4	$7.56 - 6.93(m, Ar-H)$ $0.97(s, 12H, -CH3)$ 4.16(d, 8H, $-OCH2$ -), $J = 16 Hz$ 4.75(s, 4H, NH) $3.05(t, 2H, -CH)$ 2.19(d, 8H, $-CH_2$)	$26.53(-CH2)$ 21.84 (CH ₃ , dtp) 32.75(q, C, dtp) 75.71(d, $-OCH_2$, dtp) $136.32(Ar-C)$ $165.71(C=N)$ 42.29(CH) 27.59 (CH ₂)	91.50
5	1.24(s, 24H, $-CH_3$) $7.65 - 6.88(m, Ar-H)$ $4.93(s, 4H, -NH)$ $3.19(t, 2H, -CH)$ 2.28(d, 4H, $-CH_2$)	24.59(CH ₃ , dtp) 92.09(OC, dtp) 136.75–123.09(Ar–C) 163.82 (C=N) 43.25(CH) 27.53 (CH ₂)	104.82
6	2.52–1.10(m, 10H, –CH ₃ , CH ₂) 4.18–3.37(m, 6H, $-OCH_2$, OCH) 7.34–6.53(m, Ar–H) $4.80(s, 4H, -NH)$ $3.15(t, 2H, -CH)$ $2.25(d, 8H, -CH2)$	23.72 (CH ₃ , dtp) 76.05(-OCH, OCH ₂ , dtp) $136.52 - 122.45(Ar-C)$ $162.83(C=N)$ 43.25(CH) 27.63 (CH ₂)	107.00
7	7.59–6.72(m, Ar–H) 0.99(t, 12H, $-CH_3$) $5.15(m, 8H, -OCH2)$ 1.23(m, 8H, $-CH_2$) 5.07(s, 2H, NH) $3.45(t, 2H, -CH)$ 2.13(d, 4H, $-CH_2$)		105.82
8	7.42–6.89(m, Ar–H) 7.15(s, 2H, $-C_6H_5$) $5.02(s, 2H, -NH)$ $3.72(t, 4H, -CH)$ $2.35(d, 8H, -CH2)$		92.72
9	7.45–6.79(m, Ar–H) 2.42–2.15(m, 22H, $-CH_3$, CH ₂) $4.85 - 4.45$ (m, 2H, $-OCH$) $5.19(s, 4H, -NH)$	$91.45(-OC, dtp)$ $26.03(-CH_3, dtp)$ 76.95(-OCH, dtp) 24.15($-CH_2$, dtp)	110.00

Table 3. NMR data (δ ppm) for TiCl₂(C₁₅H₁₂N₂OX)(RO)₂PS(S).

(Continued)

(Continued)

5. Conclusion

This study describes the synthesis of a series of complexes of bidentate dithiophosphate and pyrazolines with titanium(IV). Elemental analyses indicate monomeric complexes. On the basis of these studies and available literature, octahedral geometry may be proposed for Ti(IV) [37] (figure 3). These compounds may prove useful for formation of

Compound No.	2θ	Average diameter (nm) ^a	Average diameter $(nm)^b$
3	44.8	24	67
9	47.7	32	59
15	45.4	26	82
21	51.2	44	75

Table 4. Average diameters of particles determined by XRD and TEM.

Particle size = $D = 0.9 \lambda/\beta \cos \theta_B$.

Determined by XRD technique using the following the Scherer formula.

bDetermined by TEM technique.

Figure 1. The XRD image of 3 as an example, suggesting the complexes are amorphous solids.

Figure 2. The TEM image of 3 showing particle sizes from 50 to 90 nm.

Figure 3. The octahedral geometry for $\text{TiCl}_2(\text{C}_{15}\text{H}_{12}\text{N}_2\text{OX})(\text{RO})_2\text{PS}(\text{S})$ in which dithiophosphate ligand and pyrazolines are bidentate.

 $TiS₂$ by sulfide sol-gel due to reduced acidity of the metal centre. Further studies of sulfide sol gels of these derivatives are under investigation.

Acknowledgments

The authors are grateful to SAIF, CDRI Lucknow (India), IIT Delhi (India), BHU Varanasi (India), USIC, Delhi University Delhi (India) for providing the necessary spectral and analytical data. The authors thank the UGC for providing financial support in the form of major research project.

References

- [1] P.J. Blower, J.R. Ditworth. Coord. Chem. Rev., 76, 121 (1987).
- [2] R. Verma, V.D. Gupta, R.C. Mehrotra. Nat. Acad. Sci. Lett., 2, 130 (1979).
- [3] S.K. Saini, V.D. Gupta, R.C. Mehrotra. Inorg. Nucl. Chem. Lett., 14, 109 (1978).
- [4] G. Winter. *Inorg. Chem. Rev.*, 2, 253 (1980).
- [5] J.O. Hill, R.J. Magee. *Inorg. Chem. Rev.*, 3, 141 (1981).
- [6] X. Lin, Q. Liu, Z. Chen, D. Wang. *J. Rare Earths*, **25**, 396 (2007).
- [7] M.G.B. Drew, G.A. Farsyth, M. Hasan, R.J. Robson, D.A. Rice. J. Chem. Soc., Dalton Trans., 1027 (1987).
- [8] S. Walenty, A.S. Plaial. J. Pol. Chem., 63, 323 (1989); Chem. Abstr., 113, 87580n (1990).
- [9] A.T. Pilipenko, L.T. Savranskii, A.I. Zubenko. Koord. Khim., 8, 897 (1982).
- [10] R.G. Cavell, E.D. Day, W. Byers, P.M. Watkins. J. Inorg. Chem., 11, 1759 (1972).
- [11] W.F. Tabor, P.M. Williamson, US Pat. 3, 549 (1970); Chem. Abstr., 74, 78131n (1971).
- [12] R.T. Vanderbelt, Fr. Pat., 374 (1964); Chem. Abstr., 62, 11614n (1965).
- [13] C. Silvestru, C. Socacia, A. Bara, I. Haiduc. Anticancer Res., 10, 803 (1990).
- [14] C. Chatterjee, D. Sukhani, V.D. Gupta, R.C. Mehrotra. Ind. J. Chem., 8, 362 (1970).
- [15] E.G. Muller, S.F. Walkinsons, L.F. Dhal. J. Organomet. Chem., 111, 73 (1976).
- [16] C.J. Carmalt, E.S. Peters, I.P. Parkin, D.A. Tocher. Polyhedron, 26, 43 (2007).
- [17] C.J. Carmalt, C.W. Dinnage, I.P. Parkin, J.W. Steed. Inorg. Chem., 39, 2693 (2009).
- [18] C.J. Carmalt, C.W. Dinnage, I.P. Parkin, A.J.P. White, D.J. Williams. J. Chem. Soc., Dalton Trans., 2554 (2001).
- [19] T.S. Lewkebandara, C.H. Winter. Adv. Mater., 6, 237 (1994).
- [20] C.J. Carmalt, I.P. Parkins, E.S. Peters. *Polyhedron*, 22, 1363 (2003).
- [21] E.S. Peters, C.J. Carmalt, I.P. Parkins. J. Mater. Chem., 14, 3474 (2004).
- [22] A.I. Vogel. A Text Book of Qualitative Inorganic Analysis, ELBS and Longman Group Ltd, London (1978).
- [23] T.C. Sharma, V. Saxena, N.J. Reddy. J. Acta Chim., 93, 4 (1977).
- [24] H.P.S. Chauhan, B.P.S. Chauhan, G. Srivastava, R.C. Mehrotra. Phosphorus, Sulphur Silicon, 15, 49 (1983).
- [25] A.I. Vogel. A Text Book of Qualitative Inorganic Analysis, ELBS and Longman Group Ltd, London (1985).
- [26] U.N. Tripathi, J.S. Solanki, Mohd. Safi Ahmed, A. Bhardwaj. J. Coord. Chem., 62, 636 (2009).
- [27] U.N. Tripathi, K.V. Sharma, V. Sharma. *J. Coord. Chem.*, **61**, 3314 (2008).
- [28] U.N. Tripathi, P.P. Bipin, R. Mirza, A. Chaturvedi. Pol. J. Chem., 73, 1751 (1999).
- [29] U.N. Tripathi, P.P. Bipin, R. Mirza, S. Shukla. J. Coord. Chem., 55, 1111 (2002).
- [30] L.D. Quin. The Heterocyclic Chemistry of Phosphorus, Wiley Interscience, New York (1981).
- [31] L.C. Thomas. Interpretation of the IR Spectra of Organophosphorus Compounds, Heyden, London (1974).
- [32] D.E.C. Corbridge. In Topics in Phosphorus Chemistry, M. Grayson, E.J. Griffith (Eds), Vol. 6, p. 274, Interscience, New York (1969).
- [33] R.M. Silverstein, F.X. Webster. Spectrometric Identification of Organic Compounds, 6th Edn, Wiley, New York (1998).
- [34] K. Nakamoto. IR Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York (1970).
- [35] C. Glidewell. Inorg. Chim. Acta, 25, 159 (1977).
- [36] B.P.S. Chauhan, G. Srivastava, R.C. Mehrotra. Synth. React. Inorg. Met–Org. Chem., 13, 1050 (1982).
- [37] I.S. Ahuja. J. Inorg. Nucl. Chem., 29, 2091 (1976).