This article was downloaded by: [Renmin University of China] On: 13 October 2013, At: 10:29 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gcoo20

Synthesis and spectral behavior of nanometric Ti(IV) complexes with nitrogen, sulfur, and oxygen donors

U.N. Tripathi $^{\rm a}$, Neetu Srivastava $^{\rm a}$, Mohd. Safi Ahmed $^{\rm b}$, A. Siddiqui $^{\rm a}$ & Shashank K. Dwivedi $^{\rm a}$

^a Department of Chemistry , D.D.U. Gorakhpur University , Gorakhpur 273001, UP, India

^b School of Studies in Chemistry, Vikram University, Ujjain, MP, India

Published online: 14 Nov 2011.

To cite this article: U.N. Tripathi , Neetu Srivastava , Mohd. Safi Ahmed , A. Siddiqui & Shashank K. Dwivedi (2011) Synthesis and spectral behavior of nanometric Ti(IV) complexes with nitrogen, sulfur, and oxygen donors, Journal of Coordination Chemistry, 64:22, 3938-3949, DOI: 10.1080/00958972.2011.625020

To link to this article: <u>http://dx.doi.org/10.1080/00958972.2011.625020</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

Synthesis and spectral behavior of nanometric Ti(IV) complexes with nitrogen, sulfur, and oxygen donors

U.N. TRIPATHI^{†*}, NEETU SRIVASTAVA[†], MOHD. SAFI AHMED[‡], A. SIDDIQUI[†] and SHASHANK K. DWIVEDI[†]

†Department of Chemistry, D.D.U. Gorakhpur University, Gorakhpur 273001, UP, India ‡School of Studies in Chemistry, Vikram University, Ujjain, MP, India

(Received 11 July 2011; in final form 30 August 2011)

To study the spectral behavior of Ti(IV) complexes with sulfur donors, several new nano-sized mixed ligand complexes of Ti(IV) have been synthesized by the reaction of titanium(IV) salts with 3(2'-hydroxyl phenyl)-5-(4-substituted phenyl)pyrazolines and ammonium salts of dithiophosphates. Spectroscopic and X-ray diffraction studies reveal amorphous and monomeric complexes. The Ti(IV) complexes show octahedral geometry in which dithiophosphate and pyrazoline are bidentate. Transmission electron microscopic image shows that the particle size ranges from 50 to 90 nm.

Keywords: Titanium(IV); Nano particle; Dithiophosphate; Pyrazolines

1. Introduction

Interest in the chemistry of metal complexes with sulfur containing ligands arises due to their biological activities [1–6]. Ligation of sulfur of O,O'-dialkyl and alkylene dithiophosphate derivatives to Cu(II), Ag(I), and Fe(II) has been reported by several authors [7–10]. Derivatives of arsenic, antimony, and bismuth with dithiophosphates are employed as lubricant additives [11, 12] and antitumor agents [13].

Synthesis of simple thiols of titanium is not possible due to the hard acid character of titanium [14]. To reduce the acidic strength of Ti(IV) several authors have attached electron-rich ligands such as cyclopentadienyl and dialkyl nitrogen, which then form stable complexes with sulfur donors [15–18]. To study the synthetic and spectral behavior of Ti(IV) complexes with nitrogen, sulfur and oxygen donors, a series of Ti(IV) complexes containing pyrazoline and dithiophosphate have been synthesized. The resulting complex may act as a precursor for formation of titanium disulfide thin film [19–21].

^{*}Corresponding author. Email: un tripathi@yahoo.com

2. Materials and methods

All reactions were carried out under absolutely dry conditions. Solvents were distilled, dried and purified by standard techniques [22]. Pyrazolines and the ammonium salts of dialkyl/alkylene dithiophosphates were prepared by literature methods [23, 24]. Chloride was estimated by Volhard's method [25] and titanium was determined gravimetrically by Cupferron's method [25]. Elemental analyses (C, H, N) were obtained by using a Coleman CHN analyzer (table 1). IR spectra were recorded on a Varian 3100 FT-IR spectrophotometer from 4000 to 200 cm⁻¹. ¹H NMR spectra and proton decoupled ¹³C NMR spectra were recorded at room temperature on a JOEL AL 300 FT NMR spectrophotometer operated at 300.40 MHz. X-ray diffraction studies were carried out on a Bruker Nonius Kappa CCD diffractometer at room temperature. TEM studies have been carried out on a JEOL 2010 high-resolution transmission electron microscope, operated at 200 keV. FAB mass spectra were recorded on a JOEL SX102 mass spectrometer using Argon or Xenon (6 kV, 10 mA) as the FAB gas.

3. Experimental

3.1. Synthesis of $[TiCl_2(C_{15}H_{12}N_2OH)(OC_3H_7)_2P(S)_2]$ (1)

Titanium tetrachloride suspension in benzene (0.97 g, 5.10 mmol) was added dropwise to a solution of pyrazoline (1.21 g, 5.10 mmol) in benzene at room temperature with constant stirring for 2–3 h. The ammonium salt of dithiophosphate solution (1.18 g, 5.08 mmol) in methanol was added dropwise to the reaction mixture and stirring continued for 4–5 h. The NH₄Cl was filtered off through an alkoxy funnel and the volatiles were removed from the filtrate under reduced pressure. Compounds **2–24** were synthesized by the same procedure.

4. Results and discussion

All the compounds are red to reddish brown non-hygroscopic solids, stable at room temperature, and soluble in common organic solvents (methanol, chloroform, THF, DMSO, and DMF). Molecular weight measurement indicates monomers. Elemental analysis (C, H, S, Cl, Ti, and N) data are in accord with the stoichiometry proposed.

4.1. IR spectral data

IR spectra show bands of medium intensity at 3397–3348 cm⁻¹ due to ν [N–H] [26] and bands at 1650–1603 cm⁻¹ due to ν [C=N] [27]. In all compounds, ν [C=N] is shifted to lower wavenumber in comparison to spectra of free pyrazolines (at ~1654 cm⁻¹), suggesting imino nitrogen coordination. The ν (O–H) originally at ~3080 cm⁻¹ is completely missing from spectra of complexes. Bands at 1090–1010 cm⁻¹ and 890–850 cm⁻¹ have been assigned to ν [(P)–O–C] [28, 29] and ν [P–O–(C)] [30, 31], respectively. The ν [P=S] may have bands at 710–660 cm⁻¹, indicating bidentate

13 October 2013	
at 10:29	
of China]	
Jniversity	
[Renmin I	
Downloaded by	

Table 1. Physical and analytical data for $TiCl_2(C_{15}H_{12}N_2OX)[S_2P(OR)_2].$

		Mol. wt.		4	Analysis [Fou	ind (Calcd)]		
Compound No.	Chemical formula	round (Calcd)	Metal	s	C	Н	z	C
1	TiCl ₂ (C ₁₅ H ₁₂ N ₂ OH)[S ₂ P(OCH ₂ CH ₂ CH ₃) ₂]	570.0	8.39	11.28	44.20	4.70	4.90	12.46
		(568.9)	(8.42)	(11.24)	(44.29)	(4.74)	(4.92)	(12.50)
2	$TiCl_2(C_{15}H_{12}N_2OH)[S_2P(OC_6H_5)_2]$	612.0	7.82	10.44	52.96	3.75	4.54	11.57
		(610.9)	(7.84)	(10.47)	(53.03)	(3.76)	(4.58)	(11.62)
3	TiCl,(C,,H,,N,OH)[S,POC(CH,),CH,CH(CH,)O]	580.0	8.25	11.09	43.45	4.29	4.82	12.20
		(578.9)	(8.27)	(11.05)	(43.53)	(4.31)	(4.83)	(12.26)
4		550.0	8.70	11.60	43.33	4.12	5.10	12.80
		(552.9)	(8.66)	(11.57)	(43.40)	(4.15)	(5.06)	(12.84)
S		565.0	8.47	11.25	44.40	4.39	4.90	12.47
	11 - 12(-1511) - 121 - 02(-113)	(567.9)	(8.44)	(11.28)	(44.45)	(4.40)	(4.93)	(12.53)
6		535.0	8.85	11.84	42.15	5.36	5.15	13.15
		(538.9)	(8.88)	(11.87)	(42.30)	(5.39)	(5.19)	(13.19)
7	$TiCl_2(C_{15}H_{12}N_2OCH_3)[S_2P(OCH_2CH_2CH_3)_2]$	580.0	8.24	10.95	45.17	4.95	4.78	12.15
		(582.9)	(8.21)	(10.97)	(45.29)	(4.97)	(4.80)	(12.18)
8	$TiCl_2(C_{15}H_{12}N_2OCH_3)[S_2P(OC_6H_5)_2]$	650.0	7.33	9.81	51.50	3.80	4.27	10.87
		(650.9)	(7.35)	(9.83)	(51.68)	(3.84)	(4.30)	(10.92)
6		580.0	8.21	10.98	43.27	4.61	4.79	12.17
		(580.9)	(8.25)	(11.01)	(43.39)	(4.64)	(4.82)	(12.22)
10		570.0	8.46	11.25	44.32	4.39	4.91	12.55
		(566.9)	(8.44)	(11.28)	(44.45)	(4.40)	(4.93)	(12.52)
11		580.0	8.22	10.99	45.40	4.63	4.80	12.24
		(580.9)	(8.24)	(11.03)	(45.44)	(4.64)	(4.82)	(12.22)
12		550.0	8.65	11.52	43.32	4.12	5.03	12.81
	11012(015tt1210200tt3)[02FUUtt20tt20tt120tt]	(552.9)	(8.68)	(11.57)	(43.40)	(4.15)	(5.06)	(12.84)
13	$TiCl_2(C_{15}H_{12}N_2O_2CH_3)[S_2P(OCH_2CH_2CH_3)_2]$	595.0	8.10	10.65	44.02	4.81	4.65	11.81
		(598.9)	(8.13)	(10.70)	(44.14)	(4.84)	(4.67)	(11.85)
14	$TiCl_2(C_{15}H_{12}N_2O_2CH_3)[S_2P(OC_6H_5)_2]$	660.0	7.15	9.52	50.20	3.69	4.15	12.59
		(666.9)	(7.18)	(9.59)	(50.38)	(3.74)	(4.19)	(12.62)
15	TiCl ₃ (C ₁ ,H ₁₃ N,O ₃ CH ₃)(S,POC(CH ₃),CH ₅ CH(CH ₃)O]	595.0	8.05	10.74	44.15	4.67	4.65	11.91
		(4.040)	(20.8)	(10.71)	(77.44)	(60.4)	(4.08)	(11.89)

3940

U.N. Tripathi et al.

16	$TiCl_2(C_{15}H_{12}N_2O_2CH_3)[S_2POCH_2C(CH_3)_2CH_2O]$	580.0 (582.9)	8.20 (8.23)	10.99 (10.97)	43.20 (43.23)	4.26 (4.28)	4.78 (4.80)	12.08 (12.11)
17	$TiCl_2(C_{15}H_{12}N_2O_2CH_3)[S_2POC(CH_3)_2C(CH_3)_2O]$	596.0 (596.9)	8.05 (8.02)	10.66 (10.71)	44.17 (44.22)	4.69 (4.64)	4.65 (4.69)	11.85 (11.89)
18	$TiCl_2(C_{15}H_{12}N_2O_2CH_3)[S_2POCH_2CH_2CH_2CH(CH_3)O]$	565.0 1520 01	8.38	11.24	41.17	4.02	4.89	12.45
19	$TiCl_2(C_{15}H_{12}N_2OCl)[S_2P(OCH_2CH_2CH_3)_2]$	(200.0) 600.0	7.89 7.89	10.55	41.70	(1 .04) 3.13	(4.92) 4.60	17.09
20	TiCl ₂ (C ₁₅ H ₁₂ N ₂ OCl)[S ₂ P(OC ₆ H ₃) ₂]	(603.4) 665.0	(7.93) 7.10	(10.60) 9.51	(41.76) 48.15	(3.14) 3.25	(4.63) 4.16	(17.05)
21		(671.4) 600.0	(7.13) 7 91	(9.53) 10.61	(48.25) 41.80	(3.27) 3.98	(4.17) 4.61	(15.86) 17.68
l	$TiCl_2(C_{15}H_{12}N_2OCI)[S_2POC(CH_3)_2CH_2CH(CH_3)O)]$	(601.4)	(7.95)	(10.64)	(41.86)	(3.99)	(4.65)	(17.70)
22	TiCl ₃ (C ₁₅ H ₁₂ N, OCl)[S,POCH ₃ C(CH ₃),CH ₅ O]	590.0	8.17	10.85	40.76	3.71	4.73	18.10
		(587.4)	(8.14) 7.00	(10.89)	(40.85)	(3.74) 3.22	(4.76)	(18.13)
23	$TiCl_2(C_{15}H_{12}N_2OCI)[S_2POC(CH_3)_2C(CH_3)_2O]$	605.0 (601.4)	7.89 (7.96)	10.59 (10.64)	41.75 (41.86)	3.93 (3.98)	4.63 (4.65)	(17.70)
24	LULULULULULULULULULULULULULULULULULULU	575.0	8.31	11.20	39.75	3.47	4.85	18.47
		(573.4)	(8.35)	(11.16)	(39.76)	(3.48)	(4.88)	(18.50)

dithiophosphate [28, 29]. The bands at $610-554 \text{ cm}^{-1}$ may be ascribed to ν [P–S] [32]. New bands (in comparison to free ligand) at 334–320 cm⁻¹ have been assigned to ν [Ti–S] [33]; bands at 360–348 cm⁻¹, 449–429 cm⁻¹, and 383–371 cm⁻¹ are assigned to ν [Ti–Cl], ν [Ti–O], and ν [Ti–N] [33]. The IR spectral data are given in table 2.

4.2. ¹H NMR spectra

¹H NMR spectra have been recorded in CDCl₃. The aromatic protons of pyrazolines were observed as a complex pattern at δ 7.85–6.89 [34]. The peak due to hydroxyl protons (originally present at $\delta \sim 11.00$ in free pyrazolines) is absent from spectra of the complex, suggesting bonding through hydroxyl oxygen. The appearance of a peak at δ 5.35–4.95 as a broad singlet is assigned to –NH (originally at δ 5.4–5.0), indicating non-involvement of –NH [34]. Peaks at δ 3.54–3.05 and δ 2.56–2.01 are assigned to –CH and –CH₂. Bands at δ 5.32–4.18 are assigned to –OCH₂ and –OCH. Skeletal protons of phenyl are at δ 7.25–7.0.

4.3. ³¹P NMR data

In ³¹P NMR spectra of these compounds only one signal is observed. Downfield (δ 15–19) shifting of the signal due to dithiophosphate confirms bidentate dithiophosphate [35, 36].

4.4. ¹³C NMR data

The proton decoupled ¹³C NMR spectra show all signals of dithiophosphates and pyrazolines. Signals at 137.90–121.32 ppm as a complex pattern are assigned to aromatic carbons. The signal at 167.81–162.95 ppm due to imino carbon of C=N group shifts downfield in comparison to free pyrazolines (143.50–142.80 ppm), suggesting imino nitrogen coordination. Resonances of –OC and –OCH of dithiophosphates are observed at 91.45–93.00 ppm and 75.93–77.52 ppm. Peaks of –CH and CH₂ are at 45.73–43.09 and 27.85–24.23, respectively. The NMR (¹H, ¹³C, and ³¹P) data are summarized in table 3.

4.5. XRD and TEM studies

These complexes have been examined for crystalline/amorphous nature through XRD; all complexes are amorphous solids. Broadening of diffraction peaks was used to estimate the average domain size in terms of the "Debye–Scherrer" expression.

Particle size =
$$D = 0.9\lambda/\beta \cos \theta_{\rm B}$$
.

The average diameter was in the range 20-50 nm. TEM studies showed that the particle size ranged from 50 to 90 nm. The mean diameters of the different particles synthesized are summarized in table 4. XRD micrograph and TEM images of **3** are shown in figures 1 and 2, respectively.

	Compound No.	μ [N-H]	ν [C=N]	ν [C–O]	ν[(P)C]	ν[P-O-(C)]	ν [P=S]	ν [P–S]	Ring vib	ν[Ti–O]	ν [Ti–S]	ν[Ti–N]	ν[Ti-Cl]
2 3375 1650 - 1075 890 685 590 - 431 4 3348 1604 - 1010 850 710 580 910 433 5 3356 1616 - 1030 870 663 540 960 429 7 3357 1647 - 1033 870 663 530 910 433 8 3356 1645 - 1033 870 660 590 670 663 920 431 8 3356 1647 - 1033 875 660 590 572 970 431 11 3355 1610 - 1012 887 674 583 941 429 13 3356 1654 - 1012 887 674 583 970 441 3355 1610 - 1017 1017 887 678	1	3365	1636	I	1090	860	660	560	I	435	328	376	360
33348 1604 - 1010 850 710 580 910 433 633348 1620 - 1050 880 680 540 960 429 7 3357 1616 - 1033 880 670 695 610 910 433 8 3356 1616 - 1033 880 670 690 572 910 433 8 3356 1610 - 1035 875 660 590 677 590 440 9 3356 1610 - 1010 890 675 580 -1 429 9 3356 1610 - 1010 890 664 583 941 429 11 3352 1610 - 1010 890 664 583 941 429 13 3353 1610 - 1010 883 674 583 950 443 13 3354 1622 1017 1176 887 678 593 950 443 14 3364 1622 1017 1176 887 660 577 940 443 13 3375 1632 1017 1176 887 660 577 940 443 17 3375 1632 1017 1176 887 660 577 940 443 18 3375 1632 1017 1017 877 570 <th>2</th> <th>3375</th> <th>1650</th> <th> </th> <th>1075</th> <th>890</th> <th>685</th> <th>590</th> <th>I</th> <th>431</th> <th>320</th> <th>381</th> <th>350</th>	2	3375	1650		1075	890	685	590	I	431	320	381	350
	3	3348	1604	Ι	1010	850	710	580	910	433	324	384	352
	4	3348	1620	Ι	1050	880	680	540	960	429	326	371	357
	ŝ	3350	1603	I	1030	870	695	610	910	436	322	381	348
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	3368	1616	I	1035	890	670	605	920	430	324	385	351
	7	3357	1647	I	1042	860	069	595	I	441	321	375	350
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	3356	1645	I	1052	850	675	580	Ι	430	331	379	348
	6	3362	1610	I	1010	890	664	583	941	429	327	380	356
11 3352 1624 $ 1025$ 875 715 554 915 449 12 3385 1610 $ 1015$ 883 674 583 950 443 13 3363 1635 1017 1012 887 678 593 950 443 14 3364 1622 1021 1017 887 678 593 940 447 15 3375 1632 1017 1176 885 660 577 $ 447$ 17 3375 1632 10017 1176 887 660 577 $ 443$ 17 3372 1636 1017 1176 872 685 594 910 448 17 3372 1636 1015 1090 890 670 554 912 447 18 3379 1668 $ 1082$ 880 710 550 $ 447$ 20 3378 1615 $ 1011$ 870 665 607 $ 447$ 21 3372 1605 $ 1037$ 875 712 593 955 441 23 2372 1605 $ 1037$ 875 712 593 955 441	10	3350	1635	I	1085	875	069	572	970	431	331	372	360
12 3385 1610 $-$ 1015 883 674 583 950 443 13 3364 1635 1017 1042 887 674 583 950 443 14 3364 1622 1021 1017 887 674 583 950 443 15 3364 1622 1021 1017 887 678 593 $-$ 447 16 3375 1632 1017 1176 885 660 570 $-$ 443 17 3375 1632 1017 1176 885 660 570 $ 443$ 17 3372 1632 1017 870 660 570 $ 443$ 17 3372 1642 1018 1090 890 670 550 $ 447$ 20 3378 1615 $-$ 1011 870 665 607 $ 447$ 21 3372 1615 $ 102$ 875	11	3352	1624	Ι	1025	875	715	554	915	449	320	374	349
13 3363 1635 1017 1042 887 678 593 $-$ 447 14 3364 1622 1021 1017 870 680 570 $-$ 447 15 3390 1612 1017 1176 885 660 570 $-$ 443 17 3375 1632 1017 1176 885 660 570 $-$ 443 17 3375 1632 1010 1176 885 660 570 $-$ 443 17 3372 1632 1010 1176 885 660 570 $-$ 443 18 3378 1642 1015 1090 855 650 610 955 441 20 3377 1608 $-$ 1011 870 665 607 $-$ 447 21 3372 1605 $-$ 1037 875 710 550 $-$ 447 21 3372 1605 $-$ 1037 875	12	3385	1610	I	1015	883	674	583	950	443	330	381	357
14 3364 1622 1021 1017 870 680 570 $ 433$ 15 33390 1612 1017 1176 885 660 597 940 448 17 3375 1632 1020 1047 872 685 594 930 429 17 3372 1636 1015 1090 890 670 554 912 443 18 33578 1642 1018 1045 8855 650 610 965 441 19 3377 1608 $ 1011$ 870 665 607 $ 447$ 20 3377 1615 $ 1011$ 870 665 607 $ 442$ 21 3372 1605 $ 1037$ 875 712 593 955 442 23 3372 1605 $ 1037$ 875 712 593 955	13	3363	1635	1017	1042	887	678	593	I	447	325	370	360
15 3390 1612 1017 1176 885 660 597 940 448 16 3375 1632 1020 1047 872 685 594 930 429 17 3372 1636 1015 1090 890 670 554 912 432 18 3357 1642 1018 1045 855 650 610 965 441 19 3379 1608 - 1082 880 710 550 - 447 20 3378 1615 - 1011 870 665 607 - 447 21 3372 1605 - 1037 875 712 593 955 436	14	3364	1622	1021	1017	870	680	570	I	433	327	380	352
	15	3390	1612	1017	1176	885	660	597	940	448	331	382	358
17 3372 1636 1015 1090 890 670 554 912 432 18 3358 1642 1018 1045 855 650 610 965 441 19 3379 1608 $=$ 1082 880 710 550 $=$ 447 20 3378 1615 $=$ 1011 870 665 607 $=$ 442 21 3372 1605 $=$ 1037 875 712 593 955 436	16	3375	1632	1020	1047	872	685	594	930	429	324	377	351
18 3358 1642 1018 1045 855 650 610 965 441 19 3379 1608 - 1082 880 710 550 - 447 20 3378 1615 - 1011 870 665 607 - 442 21 3372 1605 - 1037 875 712 593 955 436	17	3372	1636	1015	1090	890	670	554	912	432	324	379	359
19 3379 1608 - 1082 880 710 550 - 447 20 3378 1615 - 1011 870 665 607 - 442 21 3372 1605 - 1037 875 712 593 955 436	18	3358	1642	1018	1045	855	650	610	965	441	320	370	357
20 3378 1615 - 1011 870 665 607 - 442 21 3372 1605 - 1037 875 712 593 955 436	19	3379	1608	I	1082	880	710	550	I	447	320	378	360
21 3372 1605 - 1037 875 712 593 955 436	20	3378	1615	Ι	1011	870	665	607	Ι	442	329	383	352
	21	3372	1605	Ι	1037	875	712	593	955	436	331	381	360
22 3397 1647 – 1093 890 685 590 915 429	22	3397	1647	I	1093	890	685	590	915	429	327	374	357
23 3362 1650 - 1015 830 670 542 925 450	23	3362	1650	I	1015	830	670	542	925	450	327	379	360
24 3349 1612 - 1023 885 695 580 970 445	24	3349	1612	I	1023	885	695	580	970	445	334	375	351

Table 2. IR spectral data (cm^{-1}) for TiCl₂ $(C_{15}H_{12}N_2OX)(RO)_2PS(S)$.

G 1	Cher	nical shift (δ ppm)	
No.	¹ H NMR	¹³ C NMR	³¹ P NMR
1	7.45–6.85(m, Ar–H) 0.96(t, 12H, $-CH_3$) 5.18(m, 8H, $-OCH_2-$) 1.65(m, 8H, $-CH_2$) 5.25–5.04(s, 2H, NH) 3.45–3.12(t, 2H, $-CH$) 2.18–2.01(d, 4H, $-CH$)	_	106.10
2	2.16 $-2.01(d, 4H, -CH_2)$ 7.67 $-6.89(m, Ar-H)$ 7.23(s, 2H, $-C_6H_5$) 4.67(s, 2H, $-NH$) 3.21(t, 4H, $-CH$) 2.56(d, 8H, $-CH_2$)	_	92.40
3	2.30(d, 8H, CH ₂) 7.56–6.82(m, Ar–H) 2.92–2.65(m, 22H, $-CH_3$, CH ₂) 5.32(m, 2H, $-OCH$) 4.73(s, 4H, $-NH$) 3.54(t, 2H, $-CH$) 2.21(d, 8H, CH ₂)	91.67(-OC, dtp) 24.71(-CH ₃ , dtp) 77.05(-OCH, dtp) 26.52(-CH ₂ , dtp) 136.94(Ar-C) 167.55(C=N) 43.09(-CH) 26.52(-CH)	93.60
4	7.56–6.93(m, Ar–H) 0.97(s, 12H, $-CH_3$) 4.16(d, 8H, $-OCH_2$ –), J = 16 Hz 4.75(s, 4H, NH) 3.05(t, 2H, $-CH$) 2.19(d, 8H, $-CH$)	$20.3(-CH_2)$ $21.84(CH_3, dtp)$ $32.75(q, C, dtp)$ $75.71(d, -OCH_2, dtp)$ $136.32(Ar-C)$ $165.71(C=N)$ $42.29(CH)$ $27.50(CH)$	91.50
5	$\begin{array}{l} 1.24(s, 24H, -CH_2) \\ 1.24(s, 24H, -CH_3) \\ 7.65-6.88(m, Ar-H) \\ 4.93(s, 4H, -NH) \\ 3.19(t, 2H, -CH) \\ 2.28(d, 4H, -CH_2) \end{array}$	27.59(CH ₂) 24.59(CH ₃ , dtp) 92.09(OC, dtp) 136.75–123.09(Ar–C) 163.82(C=N) 43.25(CH) 27.53(CH ₂)	104.82
6	2.52–1.10(m, 10H, –CH ₃ , CH ₂) 4.18–3.37(m, 6H, –OCH ₂ , OCH) 7.34–6.53(m, Ar–H) 4.80(s, 4H, –NH) 3.15(t, 2H, –CH) 2.25(d, 8H, –CH ₂)	23.72(CH ₃ , dtp) 76.05(-OCH, OCH ₂ , dtp) 136.52-122.45(Ar-C) 162.83(C=N) 43.25(CH) 27.63(CH ₂)	107.00
7	7.59–6.72(m, Ar–H) 0.99(t, 12H, $-CH_3$) 5.15(m, 8H, $-OCH_2-$) 1.23(m, 8H, $-CH_2$) 5.07(s, 2H, NH) 3.45(t, 2H, $-CH$)	_	105.82
8	2.13(d, 4H, $-CH_2$) 7.42–6.89(m, Ar–H) 7.15(s, 2H, $-C_6H_5$) 5.02(s, 2H, $-NH$) 3.72(t, 4H, $-CH$) 2.35(d, 8H, $-CH_2$)	_	92.72
9	$\begin{array}{l} 7.45-6.79(m, Ar-H)\\ 2.42-2.15(m, 22H, -CH_3, CH_2)\\ 4.85-4.45(m, 2H, -OCH)\\ 5.19(s, 4H, -NH) \end{array}$	91.45(-OC, dtp) 26.03(-CH ₃ , dtp) 76.95(-OCH, dtp) 24.15(-CH ₂ , dtp)	110.00

Table 3. NMR data (δ ppm) for TiCl₂(C₁₅H₁₂N₂OX)(RO)₂PS(S).

(Continued)

rable 5. Continued.	Table	3.	Continued.
---------------------	-------	----	------------

	Cher	nical shift (δ ppm)	
Compound No.	¹ H NMR	¹³ C NMR	³¹ P NMR
	3.36(t, 2H, -CH) 2.25(d, 8H, CH ₂)	136.75(Ar-C) 163.94(C=N) 42.27(-CH)	
10	7.85–6.50(m, Ar–H) 0.97(s, 12H, –CH ₃) 4.17(d, 8H, –OCH ₂ –) J = 17 Hz	24.75(-CH ₂) 22.93(CH ₃ , dtp) 31.76(q, C, dtp) 75.93(d, -OCH ₂ , dtp) 136.93(Ar-C)	91.82
11	3.72(s, 4H, 14H) 3.73(t, 2H, $-CH$) 2.20(d, 8H, $-CH_2$) 1.45(s, 24H, $-CH_3$) 7.46–6.80(m, Ar–H) 4.76(s, 4H, $-NH$) 3.36(t, 2H, $-CH$) 2.25(d, 4H, $-CH$)	43.45(CH) 43.45(CH) 26.75(CH ₂) 26.32(CH ₃ , dtp) 92.10(OC, dtp) 136.56–123.32(Ar–C) 166.32(C=N) 45.73CH)	107.62
12	2.12–1.15(m, 10H, –CH ₃ , CH ₂) 4.12–3.32(m, 6H, –OCH ₂ , OCH) 7.45–6.82(m, Ar–H) 5.10(s, 4H, –NH)	25.93(CH ₂) 24.64(CH ₃ , dtp) 76.94(-OCH, OCH ₂ , dtp) 135.23–123.57(Ar-C) 165.94(C=N)	96.50
13	2.95(t, 2H, $-$ CH) 2.07(d, 8H, $-$ CH ₂) 7.50-6.82(m, Ar–H) 0.93(t, 12H, $-$ CH ₃) 5.10(m, 8H, $-$ OCH ₂ –) 1.45(m, 8H, $-$ CH ₂) 5.13(s, 2H, NH)	43.25(CH) 27.15(CH ₂)	105.95
14	3.75(t, 2H,-CH) 2.15(d, 4H, -CH ₂) 7.42-6.85(m, Ar-H) 7.25(s, 2H, $-C_6H_5$) 4.81(s, 2H, -NH) 3.15(t, 4H, -CH)	_	108.20
15	2.09(d, 8H, -CH ₂) 7.75-6.85(m, Ar-H) 2.35-1.93(m, 22H, -CH ₃ , CH ₂) 4.75-4.23(m, 2H, -OCH) 5.10(s, 4H, -NH) 3.23(t, 2H, -CH) 2.20(d, 8H, CH ₂)	92.15(-OC, dtp) 24.95(-CH ₃ , dtp) 76.75(-OCH, dtp) 23.32(-CH ₂ , dtp) 136.55(Ar-C) 167.21(C=N) 43.21(-CH)	95.00
16	7.54–6.80(m, Ar–H) 1.09(s, 12H, –CH ₃) 4.15(d, 8H, –OCH ₂ –) 5.32(s, 4H, NH) 3.09(t, 2H, –CH) 2.32(d, 8H, –CH ₂)	24.23(-CH ₂) 22.75(CH ₃ , dtp) 32.05(q, C, dtp) 75.95(d, -OCH ₂ , dtp) 137.52(Ar-C) 167.32(C=N) 42.92(CH)	94.72
17	1.45(s, 24H, -CH ₃) 7.59-6.75(m, Ar-H) 5.12 (4H, -NH) 3.54 (2H, -CH) 2.07 (4H, -CH ₂)	2/.23(CH ₂) 23.26(CH ₃ , dtp) 90.82(dtp) 136.27-122.32(m, Ar-C) 164.75(C=N) 42.15(CH) 26.98(CH ₂)	94.06

(Continued)

Table	3.	Continued.

	Cher	nical shift (δ ppm)	
Compound No.	¹ H NMR	¹³ C NMR	³¹ P NMR
18	2.67–1.32(m, 10H, –CH ₃ , CH ₂) 4.06–3.71(m, 6H, –OCH ₂ , OCH) 7.51–6.75(m, Ar–H) 5.09(s, 4H, –NH) 3.25(t, 2H, –CH) 2.12(d, 8H, –CH)	22.72(CH ₃ , dtp) 76.32(-OCH, OCH ₂ , dtp) 136.81-123.25(Ar-C) 162.95(C=N) 42.97(CH) 27.85(CH ₂)	91.29
19	7.43–6.70(m, Ar–H) 0.97(t, 12H, $-$ CH ₃) 5.63(m,8H, $-$ OCH ₂ –) 1.65(m, 8H, $-$ CH ₂) 5.17(s, 2H, NH) 3.81(t, 2H, $-$ CH) 2.21(d, 4H, $-$ CH ₂)		106.20
20	7.54–6.75(m, Ar–H) 7.09(s, 2H, $-C_6H_5$) 4.85(s, 2H, $-NH$) 3.12(t, 4H, $-CH$)	-	101.22
21	2.32(d, 8H, $-CH_2$) 7.60–6.87(m, Ar–H) 2.34–1.75(m, 22H, $-CH_3$, CH ₂) 4.81–4.25(m, 2H, $-OCH$) 5.15(s, 4H, $-NH$) 3.19(t, 2H, $-CH$) 2.23(d, 8H, CH ₂)	91.60(-OC, dtp) 23.65(-CH ₃ , dtp) 77.52(-OCH, dtp) 24.81(-CH ₂ , dtp) 136.45(Ar-C) 167.56(C=N) 42.92(-CH) 27.45(-CH)	93.25
22	7.45–6.70(m, Ar–H) 1.13(s, 12H, $-CH_3$) 4.09(d, 8H, $-OCH_2-$) J = 16 Hz 4.85(s, 4H, NH) 3.43(t, 2H, $-CH$) 2.13(d, 8H, $-CH_2$)	27.45(\subset 112) 22.75(CH ₃ , dtp) 36.35(q, C, dtp) 76.45(d, $-$ OCH ₂ , dtp) 135.20(Ar–C) 167.81(C=N) 42.93(CH) 27.46(CH ₂)	96.49
23	1.39(s, 24H, -CH ₃) 7.52–6.75(m, Ar–H) 4.95(s, 4H, –NH) 3.15(t, 2H, –CH) 2.10(d, 4H, –CH ₂)	23.55(CH ₃ , dtp) 92.07(OC, dtp) 137.52–123.26(Ar–C) 167.45(C=N) 43.15(CH) 27.82(CH ₂)	107.70
24	2.35–1.25(m,10H, –CH ₃ , CH ₂) 4.01–3.90(m, 6H, –OCH ₂ , OCH) 7.42–6.65(m, Ar–H) 5.10(s, 4H, –NH) 3.12(t, 2H, –CH) 2.13(d, 8H, –CH ₂)	23.92(CH ₃ , dtp) 76.45(-OCH, OCH ₂ , dtp) 136.75-123.41(Ar-C) 165.32(C=N) 43.23(CH) 27.35(CH ₂)	91.52

5. Conclusion

This study describes the synthesis of a series of complexes of bidentate dithiophosphate and pyrazolines with titanium(IV). Elemental analyses indicate monomeric complexes. On the basis of these studies and available literature, octahedral geometry may be proposed for Ti(IV) [37] (figure 3). These compounds may prove useful for formation of

Compound No.	20	Average diameter (nm) ^a	Average diameter (nm) ^b
3	44.8	24	67
9	47.7	32	59
15	45.4	26	82
21	51.2	44	75

Table 4. Average diameters of particles determined by XRD and TEM.

Particle size = $D = 0.9 \lambda/\beta \cos \theta_{\rm B}$.

^aDetermined by XRD technique using the following the Scherer formula.

^bDetermined by TEM technique.

Figure 1. The XRD image of 3 as an example, suggesting the complexes are amorphous solids.

Figure 2. The TEM image of 3 showing particle sizes from 50 to 90 nm.

Figure 3. The octahedral geometry for $TiCl_2(C_{15}H_{12}N_2OX)(RO)_2PS(S)$ in which dithiophosphate ligand and pyrazolines are bidentate.

 TiS_2 by sulfide sol-gel due to reduced acidity of the metal centre. Further studies of sulfide sol gels of these derivatives are under investigation.

Acknowledgments

The authors are grateful to SAIF, CDRI Lucknow (India), IIT Delhi (India), BHU Varanasi (India), USIC, Delhi University Delhi (India) for providing the necessary spectral and analytical data. The authors thank the UGC for providing financial support in the form of major research project.

References

- [1] P.J. Blower, J.R. Ditworth. Coord. Chem. Rev., 76, 121 (1987).
- [2] R. Verma, V.D. Gupta, R.C. Mehrotra. Nat. Acad. Sci. Lett., 2, 130 (1979).
- [3] S.K. Saini, V.D. Gupta, R.C. Mehrotra. Inorg. Nucl. Chem. Lett., 14, 109 (1978).
- [4] G. Winter. Inorg. Chem. Rev., 2, 253 (1980).
- [5] J.O. Hill, R.J. Magee. Inorg. Chem. Rev., 3, 141 (1981).
- [6] X. Lin, Q. Liu, Z. Chen, D. Wang. J. Rare Earths, 25, 396 (2007).
- [7] M.G.B. Drew, G.A. Farsyth, M. Hasan, R.J. Robson, D.A. Rice. J. Chem. Soc., Dalton Trans., 1027 (1987).
- [8] S. Walenty, A.S. Plaial. J. Pol. Chem., 63, 323 (1989); Chem. Abstr., 113, 87580n (1990).
- [9] A.T. Pilipenko, L.T. Savranskii, A.I. Zubenko. Koord. Khim., 8, 897 (1982).
- [10] R.G. Cavell, E.D. Day, W. Byers, P.M. Watkins. J. Inorg. Chem., 11, 1759 (1972).
- [11] W.F. Tabor, P.M. Williamson, US Pat. 3, 549 (1970); Chem. Abstr., 74, 78131n (1971).
- [12] R.T. Vanderbelt, Fr. Pat., 374 (1964); Chem. Abstr., 62, 11614n (1965).
- [13] C. Silvestru, C. Socacia, A. Bara, I. Haiduc. Anticancer Res., 10, 803 (1990).
- [14] C. Chatterjee, D. Sukhani, V.D. Gupta, R.C. Mehrotra. Ind. J. Chem., 8, 362 (1970).
- [15] E.G. Muller, S.F. Walkinsons, L.F. Dhal. J. Organomet. Chem., 111, 73 (1976).
- [16] C.J. Carmalt, E.S. Peters, I.P. Parkin, D.A. Tocher. Polyhedron, 26, 43 (2007).
- [17] C.J. Carmalt, C.W. Dinnage, I.P. Parkin, J.W. Steed. Inorg. Chem., 39, 2693 (2009).
- [18] C.J. Carmalt, C.W. Dinnage, I.P. Parkin, A.J.P. White, D.J. Williams. J. Chem. Soc., Dalton Trans., 2554 (2001).
- [19] T.S. Lewkebandara, C.H. Winter. Adv. Mater., 6, 237 (1994).
- [20] C.J. Carmalt, I.P. Parkins, E.S. Peters. Polyhedron, 22, 1363 (2003).
- [21] E.S. Peters, C.J. Carmalt, I.P. Parkins. J. Mater. Chem., 14, 3474 (2004).

- [22] A.I. Vogel. A Text Book of Qualitative Inorganic Analysis, ELBS and Longman Group Ltd, London (1978).
- [23] T.C. Sharma, V. Saxena, N.J. Reddy. J. Acta Chim., 93, 4 (1977).
- [24] H.P.S. Chauhan, B.P.S. Chauhan, G. Srivastava, R.C. Mehrotra. Phosphorus, Sulphur Silicon, 15, 49 (1983).
- [25] A.I. Vogel. A Text Book of Qualitative Inorganic Analysis, ELBS and Longman Group Ltd, London (1985).
- [26] U.N. Tripathi, J.S. Solanki, Mohd. Safi Ahmed, A. Bhardwaj. J. Coord. Chem., 62, 636 (2009).
- [27] U.N. Tripathi, K.V. Sharma, V. Sharma. J. Coord. Chem., 61, 3314 (2008).
- [28] U.N. Tripathi, P.P. Bipin, R. Mirza, A. Chaturvedi. Pol. J. Chem., 73, 1751 (1999).
- [29] U.N. Tripathi, P.P. Bipin, R. Mirza, S. Shukla. J. Coord. Chem., 55, 1111 (2002).
- [30] L.D. Quin. The Heterocyclic Chemistry of Phosphorus, Wiley Interscience, New York (1981).
- [31] L.C. Thomas. Interpretation of the IR Spectra of Organophosphorus Compounds, Heyden, London (1974).
- [32] D.E.C. Corbridge. In *Topics in Phosphorus Chemistry*, M. Grayson, E.J. Griffith (Eds), Vol. 6, p. 274, Interscience, New York (1969).
- [33] R.M. Silverstein, F.X. Webster. Spectrometric Identification of Organic Compounds, 6th Edn, Wiley, New York (1998).
- [34] K. Nakamoto. IR Spectra of Inorganic and Coordination Compounds, Wiley Interscience, New York (1970).
- [35] C. Glidewell. Inorg. Chim. Acta, 25, 159 (1977).
- [36] B.P.S. Chauhan, G. Srivastava, R.C. Mehrotra. Synth. React. Inorg. Met-Org. Chem., 13, 1050 (1982).
- [37] I.S. Ahuja. J. Inorg. Nucl. Chem., 29, 2091 (1976).